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ABSTRACT

---- ý>Dispersed surface waves that arrive at a seismograph/I

by traveling other than a great-circle path, or have been

delayed by reflection along the path, interfere with the

first arriving great circle waves. The problem of finding

the correct group velocity dispersion in the presence of

such multipath interference can be simplified by the use of

phase equalization filters based on assumed dispersion curves.

Group velocity dispersion curves calculated using zero cross-

ing, multiple-filter, or moving-window methods can be per-

turbed slightly with each perturbation yielding a different

phase equalization filter. Cross-correlation of the hchirpP

implied by the filter with the dispersed wave train produces

a time function whose real spectrum can be computed. The

process is repeated with different trial 4chirpso until the

integral of the real part of the spectrum is maximized. The

associated dispersion curve is then considered to be a 4best

estimates of the true curve. Application of the technique to

synthetic seismograms has shown a resolution significantly

greater than existing methods when multipath effects are

present. The use of this method is demonstrated with tele-

seismic Rayleigh waves recorded at LASA. /

Preceding PaggBlank
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INTRODUCTION

* If Rayleigh waves propagated only in a laterally

homogerneous, layered half-space the dispersion curves

obtained by the calculation of periods and velocities

from the peak and trough or zero crossing method (Ewing

and Press, 1952; McDonald et al., 1974) or from Fourier

analysis (Sato, 1955; Block and Hales, 1968; Landisman

et al., 1969; Dziewonski et al., 1969) would be the true

dispersion curves. However, dispersion data obtained by

these techniques are almost invariably discontinuous;

many show non-least time arrivals (energy refracted or

reflected front lateral boundaries) which interfere with

the wave that has traveled a true great circle path.

The effect of superposition of multipathed signals with

the primary signal is to produce a spectrum with "holes" --

and "buiidups" at various frequencies. In addition,

significant errors are introduced into the estimation of

the dispersion curve. Ii order to obtain a correct

dispersion curve for a particular travel path for either

Rayleigh or Love waves, the effects of multipathing must

be removed.

t1
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CHIRP FILTERING

Basic Principles

The concept of phase equilization (or chirp)

filtering can be utilized in the estimation of dispersion

curves for Rayleigh waves which have been complicated by

multipathing. If an initial estimate of the unknown curve

is made (e.g. the world-wide average for continental or

oceanic paths of Oliver (1962) would suffice), a

corresponding chirp wave form can be generated for this

estimate by the method of McDonald et al. (1974). Dis-

persion curves used in this process should be continuous,

moniotonically increasing functions; thus the resulting

chirps will be smoothly dispersed signals of constant

amplitude with phase determined by the estimate of the

dispersion curve.

Let c(t) be the chirp derived from an estimated

dispersion curve and g(t) the recorded signal. Then

G(t)AC(t) fg(t) c(t+T)dt = H(T)

f i

,m 4
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where H(T) is the cross-correlation function. The

Fourier transform of H(T) can be written

r G (w) C (ýv) exp i [0g ('V) - c (u))]

or

G(W) C (4u) cos [,Og(w) - jc(w)]+ isin [g(0) - •c(W)•J.

Clearly the real part of the transform of H(T) will be

maximized when the phase spectra of the chirp and signal

are equal. In this case the amplitude spectrum C(Lo)G(w)

will be real and even. The process of maximizing the

integral of the reil spectrum corresonds in the time

domain to maximizing the peak value of the correlation

function. Assuming that no multipath interference is

present, this maximization can be achieved in practice

by varying the phase of the chirp until it matches that

of the signal. The "pseudoautocorrelation" function

(or Paf) is then defined as the particular H(T) obtained

when phase equalization has been achieved. P. Paf has

two characteristics which set it apart from other cross-

correlation functions: (1) it has the maximum peak

possible for any constant amplitude assigned to the

chirp, and (2) it is an even function about this peak.

.LklI -73LI.i7



The second condition results because the frequency

domain equivalent of the Paf is real and even, and the

transform of a real and even function is also real and

even (Bracewell, 1965). A cross-correlation function

* other than a Paf can be expressed as a sum of its even

and odd parts--a fact which accounts for its peak being

smaller in magnitude.

If g(t) contains no multipaths, the dispersion

curve could be determined by use of a trial and error

method to equalize the phase spectra Og(uj.,) and gfc(uW).

The trial dispersion curve whose chirp maximizes the

integral of the real part of the transform of the result-

ing cross-correlation function would be the most accurate

estimate. Of course, if g(t) has no multipaths this

analysis is unnecessary since the dispersion curve could

be adequately determined by other means.

: j" In the case where g(t) is the combination of

multiple signals arriving at different times it can be

shown that H(T) will have a series of peaks corresponding

to each component of the total signal. Consider, for

example, the case where g(t) is composed of a true great

circle path signal and one multipathed arrival delayed

i! by a time to.
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Then

g (t) = g(t) + Ag 2 (t-t 0 ) where A is an amplitude

factor. The correlation operation now becomes

H (T)Jg (t) c (t+T) dt =J~ (t) + Ag2 (t-t0)] c(t+T)dt

(Jgllt) c (t+T)dt + A fg 2(t-t 0 )c(t+T)dt-H (t) +

AH2 (t-t 0 ).

If the dispersion characteristics of gl(t) and g 2 (t) are

similar, as is often the case when their travel paths

are nearly the same, the second peak will be a replica

of the first only delayed in time by tO and modified in

amplitude by A.

Theoretically, H(T) endures from -oa to +eo

In practice, for band limited data (15-70 sec periods,

for example), the energy is nearly all contained in

t 100 sec from the peak.. A 200 sec separation in the

arrivals times of different signals would therefore

result in noninterfering peaks and would allow the true

dispersion curve to be obtained by maximizing the real

part of the transform of the first peak. As time

separation decreases between the primary and the
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multipathed arrivals, the peaks will begin to interfere with

each other and resolution will be lost. Empirically the

minimum time separation for which this method yields accurate

results will be shown to be less than 50 sec for data con-

taining periods up to 70.

Examples Using Synthetic Sicrnals

The relations just discussed can be illustrated empir-

ically by the use of synthetic signals. Since paths from

Central Asia to the United States are of special interest,

a signal with dispersion characteristic of such a path was

chosen (propagation distance approximately=f2,000 kms). This

signal (Figure 1) has a constant amplitude and a smoothly

varying dispersion curve shown in Figure 2. This dispersion

curve (referred to as #1) was fixed at its long period end

(3.925 kms/sec at 75.5 sec) and rotated about that point.

New curves were manufactured with velocity increments of .01

km/sec at a period of 17 sec. Six additional synthetic

curves formed in this way are labeled #2,4,6 on the low Nelo-

city side of #1, and 3,5,7 on the high side. A chirp wave form

was derived from each of these seven curves using the method

of McDonald et al (1974). Each chirp was then cross-correlated

with the synthetic signal to obtain seven corr:elation fun-ctions

S . ... 2 .. . : . . . . .
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.ý'ith correponding numbers. Corralation functions 1, 2,

and 3 are shown in Figures 3-5. Since #1 is a true

autocorrelation function it displays the characteristic

of e.veness about the peak and has the highest peak

magnitude for any of the seven correlations. See the

"first half of Table 1, where the magnitude of the peak

for #1 was arbitrarily assigned the value of 1.

It may also be noted that correlations 2 and 3 are

mirror images of each other about the peak. This

characteristic results from the development of a small

odd portion in each of these time series. Because chirps

2-7 have phase spectra unequal to the signal phase, the

imaginary part of the transform does not vanish for these

correlations as it does for #1.

The real and imaginary parts of the transform of

each of the correlation functions were computed placing

tne maximum value of the main peak at zero time and

centering a 200 sec window on this peak, then using the

method of Filon (1929) for discrete transforms. The real

part was integrated over the known bandwidth (72-18 sec

period-) for each correlation function. These results

are listed in Table 1 along with the peak magnitudes,

and are shown graphically in Figure 6. For this particular

.II

- ' . _ -..- .. .. .. . . . ... ... ....
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signal it is clear that the true dispersio-n curve could

be determined from either correlation function peak

magnitude or from the integrated real part of the trans-

formed correlation functions. These criteria are i,=urly

equivalent in sensitivity.

An application of the technique was then illustrated

using a synthetic signal with a simulated multipath

(Figure 7). This signal was created .v delaying the

first synthetic signal by 50 sec, dividing its amplitude

by 2, zeroing the first 100 samples, and adding the

delayed portion to the original sign'al. The true dis-

persion curve of this multipathed signal is then the same

as that for the undisturbed signal. The same seven

filters were then applied to the new signal. Correlations

1, 2, and 3 (Figures 8-10) show both a main peak and a

smaller one delayed 50 sec, the exact time shift of the

nmultipathed energy. The eveness of #1 has been only

slightly disturbed out to the point of the second peak.

An examination of the sensitivity (Table 1, second part,

and Figure 6) for this signal shows nearly the same

results as were obtained from the undisturbed signal.

Thus the theory has been verified in these synthetic

examples; it has been shown that the true dispersion curve

is indeed attainable in the presence of multipathing.
F"

-------
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. APPLICATION TO SEISMIC DATA

The Large Aperture Seismic Array (LASA) is loca;.d
near Billings, Montana. It consists of 21 subarrnys for

I.detection of high frequency seismic energy (pattern shown

in Figure 11). All of these stations ex.*'*pt those of the

B ring include long period seismometers which record

Rayleigh and Love waves. The response curve for long

period data is shown in Figure 12. It should be noted

that all LASA seismograns shown here are the raw data. No

Scorrection has been made for instrument response nor has

there been any prefiltering of these signals.

The size of this array can cause serious problems

in the estimation of dispersion curves because multi-

pathed :signals often create different effects at sensors

separated by more than a few tens of kilometers. As a

result it may appear that each site has its own particular .7

dispersion curve ewen when this is not the case. For

example, E2 is only 70 kms east of AO, thus if Rayleigh

waves from an Asian earthquake with epicenter 10,000 kms

directly north of the array are recorded at both sites,

similar waveforms would be expected. Figures 7.3 and 14

S.. ..........n
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show the vertical channel data recorded at AO and E2

from such an earthquake (epicenter in Tadzhik, USSR).

An examination of these two signals reveals little differ-

ence-in the long period Rayleigh waves; however, at

periods of approximately 25 sec and less the seismograms

are quite different. A comparison of the recordings a4*

Fl (Figure 15) and F3 (Figure 16) from this same earth-I

quake also show variations from the AO signal. Either

structural differences across LASA or the very small

differences in travel path have caused various multipathed

signals to interfere differently with the first arriving,

I ~fundamental mode Rayleigh wave. Both the amplitude arid

phase have been distorted. Further evidence that multi-

pathed energy is present can be seen from Figures 17 and

18, where the same event is shown as recorded at D3.

Figure 17 is the radial component of motion at D3 and

Figure 18 is the transverse. Since a Rayleigh wave has

no transverse motion and Love waves would have arrived

much sooner due to their faster velocity, the signal which

appears in Figure 18 must have traveled other than a great

circle path.

For the Tadzhik earthquake, the signals recordedf at AO, C3, C4, Dl, D2, D3, and D4 are very similar inj



waveform and could be beam-gummned to give a good increase

in signal to noise ratio. However, recordings at the E

and F sites which constitute the outer rings at LASA show

significant effects of the multipathing problem which

would seriously degrade the beam-sum.

The first step in determining a dispersion curve

for the path from Tadzhik to LASA was to obtain an initial

estimate of the curve. Figure 19 is a display of the AO

group velocity data computed from zero crossings. The

scatter is typical of real signals and increases the

[difficulty in choosing a trial curve. A t'ýial line was

drawn through the data as a starting point (broken line in

L Figure 19).

Dispersion is clearly present. in the period range

of 42 - 16 sec and visibly extends to 50 and 12 for some

sensors in the array. It was determined that all trial

curves should rang2, at least to 70 sec so that no hidden

long period arrivals would be missed. The lower limit

was set at 12 sec. A chirp filter was generated from

the first trial curve and applied to the AO signal.

The resulting correlation function was then transformed

using the Filon method with a 200 sec window centered on

the maximum positive peak, and the real spectrum was

4 examined and integrated over the period range of 4,2-16 sec.

. .- ........ .. -....... ~m~a~w.mmEWuEhII~~h W EI
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The trial dispersion curve was perturbed at the

long period end; i.e., only the 50-70'sec portion was

changed. The same procedure for generating a chirp,

correlating, windowing and transforming the correlation

function was repeated for the new cirve. The real spectra

resulting from these two attempts were then compared. The

curve producing the largest integrated real spectrum was

determined the more accurate estimate. Continuing this
£j

technique with numerous other trial perturbations the

long period end of the curve was establisherd. The values

of 3.8 kms/sec at 70 sec to 3.75 at 50 were determined

best in that range. These results are in very close

agreement with the findings of Oliver (1962) for continental

Rayleigh waves.

Having determined the first section of the disper-

sion curve, perturbations were continued on successively

shorter period portions until an accurate estimate was

found for the entire curve. The belief in the correctness

of this result is reinforced by the even property displayed

in this correlation function about its peak (see Figure 20).

The final curve is labeled 7B and is plotted beside the

first estimate in Figure 19. 1
=i: 1
.i !
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A sensitivity diagram was constructed similar to

those for the synthetic siy. als shown earlier. With the

long period end fixed the rest of the curve was rotated

to obtain increments of velocity deviation at the short

period end. A set of seven new curves was created for

comparison with 7B. The results of integrated real spectra

of the correlation function transforms are listed in Table

2 along with correlation peak reagnitudes obtained from
Fi

these curves. For curves of faster velocity the sensitivity

for this signal is similar to that found in the synthetic

signals, i.e. relative magnitudes drop as the velocity

deviation is increased at the short period end. For the

slower velocity curves, however, a secondary maximum

exists below the correct curve. At a short period devia-

tion of -. 03 km/sec the relative magnitude rises to .93

after an initial drop to .85. This phenomenom can most

likely be explained by noting that as the curve is

I rotated from its correct value in Figure 19 it first goes

through a space where little dispersion data exists; as

rotation is continued, a cluster of low velocity points

is encountered which increases the correlation function

peak magnitude. Having passed this area the magnitudes

fall once again. See Figure 21.

S~4 ;E177
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Using 7B as a starting point, the dispersion

curve was then determined for other sensors in the LASA

array. It was found that 7n~ -as also the most accurate

L estimate for all of the C and D sites as well as El, E3,

and Fl. A slightly different dispersion curve (labeled

L17B) was found for E2, F2, and F3 and a third variation

of 7B (18B) was judged the best estimate for E4 and F4.

The three curves 7B, 17B, and 18B are very similar.

The only differences occur in the period range 29-34 sec.

These variations are magnified for comparison in Figure

22. A complete list of the integrated real parts of the

transformed correlation functions are given in Table 3 for

these three curves applied over the entire array. A geo-

graphical relationship between the sites and their corre-

sponding dispersion curves is shown in Figure 23.

Fone of the secondary goals of this study was to

make use of the dispersion curves determined from this

technique by creating a chirp filter which would be useful

in amplifying signal to noise ratio for small magnitude

events near Tadzhik. It is suggested that any of these

curves-- 7B, 17B, or 18B --should give a useful filter

for this purpose.
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This idea was tested using a small magnitude earth-

quake whose epicenter was located approximately 1400 kms

northeast of the Tadzhik event. The signal in Figure 24

is barely recognizable on the AO vertical channel. Figure

25 is the resulting correlation function with filter 18B

appliel to the signal. The increase in signal to noise

ratio is apparent. Both the least t-ime arrival and a

multipath or after shock delayed 140 sec are now clearly

visible.

The one difficulty encountered by this method in

its present form is the amount of labor required in com-

paring all Lhe trial curves brought about by the tremen-

dous number of perturbations possible for any initial

estimate. An automated system of curve variation from a

preliminary estimate is needed. One way of satisfying

this requirement is therefore suggested. If the initial

curve is modified to a time function dependent on

I frequency with a fixed intercept on the time axis, it

would then be possible to compute the coefficients of ai
fifth or sixth order polynomial which would closely

apprnximate the curve. Let U(f) = a+bf+cf 2 +df 3 +...

"•hEn the velocity intercept (=a) could be fixed while the

77



16

initial slope (b) and the coefficient which determines

the inflection point (c) would be varied slightly--

enough to perturb the high frequency end of the curve

through a range of ± .03 or .04 kms/sec. It is possible

that a set of curves generated in this manner could have

their chirps and signal correlations examined quickly and

efficiently by a computer which would then search for the

largest peak magnitude among the correlations and thus

determine the best curve in one complete operation.

7

2; I
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L

CONCLU-S IONS

It has been clearly demonstrated that multipathing

causes distortions in both the amplitude and phase of

dispersed wavetrains. The technique proposed here for

determining dispersion curves has been shown through the

use of synthetic signals to give nearly identical results

for both undisturbed and multipathed data. In both cases

the trial curves when fixed at the long period end, could

be used to determine the correct curve to within .01 km/sec

deviation at the short period end. Also, evidence indicates

t'-,t these results were duplicated when the method was

applied to LASA Rayleigh waves in the actual determination

of an unknown dispersion curve.

As demonstrated, the comparative accuracy of this

technique far exceeds that expected from other methods

when multipathed interference is present.

I

II
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Table 1.

Relative magnitudes of correlation 'unictions for undisturbed
synthetic signal

Short Period
Filter Deviation Max. Peak Real tntegqral

1 0 km/sec 1.0 1.0
2 -. 01 .951 .955
3 +.0l .939 .942
4 .02 .833 .838
5 +,02 .831 .824
6 -. 03 .674 .673

7 +.03 .653 .651

Relative malnitudes of correlation functions for multipathed

synthetic signal

Short Period
Filter Deviation Max Peak Rcal Integral

1 0 km/sec 1.0 1.0
2 -. 01 .955 .963
3 +.01 .950 .952
4 -. 02 .852 .857
5 +.02 .835 .840
6 -. 03 .724 .680
7 +.03 .699 .700

I

I

i7-
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Table 2

F Relative magnitudes of correlation functions for AOTadzhik signal

Short Period Dev.

from Curve 7B Max, Peak Real Integ~ral

0 km/sec 1.0 1.0
-.01 .846 .847
+.01 .826 .809
-. 02 .910 .911
+.02 .825 .809
-. 03 .930 .928
+.03 .778 .726
-. 05 .886 .880

E WI

[I
•.,!.

> "i • I
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TABLE 22

P EAL INTEGRAL OF CS9RE.LATION FUNCTION FO3R TADZHIK AR<;U-
OF 2.7 MIARCH 1972 9-17-10,

SITý FILTLR INTEGRALCL05 UNITS)

071 C, 157

A C 18B .0
C3 71L3 1

C 3 17B 13

C3 1sp 1s26

C4 17B
C4 1v27

Dl 17B 1 .68

Dl 166 1.,41
D2 7 B 1'48

V D L 171 1.113
Dp 18 B 1 s 24
0i 7 3 2.66
D03 17 E 1 17
03 13 1!3 3 5

D04 73 1*44
D17B I1a14

04 18 b 10*08
El . 713 1 *19
El11 l7 1 *14
El1 181 B 99
E 2 76 1.41

L73 1o54

E 3 71B 1 73
E 3 176 1 4 g

F3 1B 1 P46

E 4 713 1 8'06

E4 18 E3 1.16

F171L3 B j.

FP7B .63

F37b 3

F -- 17 b.1 k -43

7F 37 .. . . .. . . .. 7.. . .. .. . . . .i
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FIGURE CAPTIONS

Fiqure Caption

1 Synthetic signal.

2 Dispersion curve (#1) of synthetic signal
shown in Figure 1.

3 Correlation function of synthetic signal
with chirp 1. (true autocorrelation)

4 Correlation function of synthetic signal
with chirp 2.

5 Correlation function of synthetic signal with
chirp 3.

6 Sensitivity plot. Relative magnitudes of
the correlation function peaks and the real
spectral integrals for the seven chirps
applied to (1) the undisturbed synthetic
signal and (2) the multipathed synthetic
signal.

7 Multipathed signal. The synthetic signal had
its first 100 seconds zeroed; it was then

shifted 50 seconds and added at half ampli-
• tude to the original signal.

8 Correlation function of multipathed signal
with chirp 1.

9 Correlation function of multipathed signal
with chirp 2.

1 0 Correlation function of multipathed signal

with chirp 3.

11 LASA array map.

12 LASA long period response curve.

- -1
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Ficfure Caption

13 Tadzhik earthquake--AO vertical channel.

J14 Tadzhik earthquake--E2 vertical channel.
15 Tadzhik earthquake--Fl vertical channel.

16 Tadzhik earthquake--F3 vertical c annel.

17 Tadzhik earthquake--D3 radial channel.

18 Tadzhik earthquake--D3 transverse channel.

19 AO Tadzhik group velocity plot. The data
points are computed from zero crossings of
the signal. Curve 7B shows its relation
to the dispersion data.

20 *Cross correlation function of AO Tadzhik
vertical signal and chirp 7B.

21 Sensitivity plot. Relative magnitudes of
correlation function peaks.

22 Curves 7B, 17B, and 18B. The differences
between these curves has been accentuated
by the large scale plot.

23 Sensitivity plot. Relative magnitudes of
the correlation function peaks and the real
spectral integrals for the eight chirps
applied to the AO Tadzhik vertical signal.

24 AO vertical channel for an earthquake approx-
imately 1400 kms northeast of the Tadzhik
event.

25 Correlation function of event from Figure 25
with filter 18B applied.

................................ ".. ....................
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